Statistics Calculators
Tables and Graphs
Numerical Summaries
Probability Basics
Discrete Distributions
Continuous Distributions
Sampling Distributions
Confidence Intervals
Hypothesis Testing
Two Populations
Population Variances
Goodness of Fit
Simple Regression
Multiple Regression
Time Series Analysis
Practice
Tables and Graphs
Numerical Summaries
Help
(current)
Two Populations
Confidence Intervals
$n_1$
=
x̄₁
p̄₁
x̄₁
p̄₁
=
σ₁
s₁
=
$n_2$
=
x̄₂
=
σ₂
=
$\text{Confidence Level:}$
99
95
90
%
Solve
Example 1
•
Example 2
Hypothesis Testing
$H_o$:
μ₁ - μ₂
p₁ - p₂
$\mu_d$
≥
≤
=
0
$H_a$:
μ₁ - μ₂
$\mu_d$
<
>
≠
$D_o$
$n_1$
=
$\bar{x}_1$
$\bar{p}_1$
=
σ₁
s₁
=
$n_2$
=
$\bar{x}_2$
=
σ₂
=
$\text{Level of Significance:}$
$\alpha$ =
.10
.05
.01
$\text{Matched Samples}$
Solve
Example 1
•
Example 2